
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  18 ( 1 9 8 3 )  8 6 4 - 8 8 3  

Computer simulation of polyethylene crystals 
Part 2 The boundary properties of twins and stacking faults 

N. A. GEARY* ,  D. J. BACON 
Department of Metallurgy and Materials Science, The University of Liverpool, 
P.O. Box 147, Liverpool, UK 

The computer programs described in Part 1 [9] have been used to investigate the struc- 
ture and energy of stacking-faults and coherent twin boundaries in model polyethylene 
crystals. They are particularly relevant to the deformation behaviour of polyethylene, and 
it is explained how simulation studies can supplement experimental observations. 
Generalized translation faults have been simulated on the low-index planes of ortho- 
rhombic and monoclinic crystals constructed from rigid molecular chains of infinite 
length, and the stable faults have been identified. In the former structure, the only faults 
of significance are on the {110} planes, and three different configurations exist, each of 
energy ~ 10 mJ m -2. In the monoclinic phase, two stable faults occur on each of the 
planes (100) and (010), and in both cases the most stable fault has an energy ~ 3 mJ m-:. 
The possible implications of these findings for chain-axis and transverse slip in the two 
crystal structures are discussed. The structures of the coherent boundaries of {110} and 
{310} twins in orthorhombic and (100) and (010) twins in monoclinic crystals have been 
investigated, and in all cases several stable configurations are possible. The {310} inter- 
faces have high energy (>~ 30 mJ m-2), whereas the others are similar in energy to the 
stacking faults. The results indicate the need to simulate incoherent boundaries. All the 
stable structures observed are found to have a simple geometrical explanation, and are not 
sensitive to the interatomic potentials used. 

1. Introduction 
The plastic behaviour under load of polymer 
crystals, and consequently of semicrystalline poly- 
mers, is dependent upon their ability to deform by 
shear in a variety of modes. As discussed in several 
reviews [1-3],  they exhibit dislocation slip, twin- 
ning and martensitic transformations, these mech- 
anisms having been most widely studied in poly- 
ethylene of orthorhombic crystal structure. 

The slip systems reported do not break the 
molecules, and so the slip planes are all of the 
[00l ]  zone. The two basic forms of slip must 
involve shears either parallel or perpendicular to 
[001], the chain axis, and the planes and direc- 
tions of the slip systems are therefore either (hkO) 
[001] or (hkO) [kh0], respectively. The former 
"chain-axis" slip system is befieved to result from 

the movement of [00l]  screw dislocations, for 
which good evidence exists [3 ]. The latter "trans- 
verse" system can take various forms, in principle, 
owing to the variety of possible Burgers vectors. 
The shortest lattice vector is [010], and the (100) 
[010] system is, therefore, anticipated on dis- 
location-energy grounds to be preferred to (010) 
[100], which involves the next shortest vector. 
Whilst length of Burgers vector might appear to 
rule out the third system, {110} (1 10), it was sug- 
gested by Frank et al. [4] that the perfect dis- 
location involved may dissociate into two partials 
by a reaction of the form 

<1 10~--, 1<1 ]e> + ~(1 1 ~). ( l )  

If e is small, each partial vector can have a length 
shorter than [010]: it must be emphasized, how- 
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ever, that this dissociation requires a stable stack- 
ing fault on {110}. Although its existence has 
been inferred by Holland [5] with the observation 
of terminating {1T0} fold planes in overlapping 
crystal lamellae, there is no information about the 
energy, translation vector and structure of the 
fault. (Nor is it certain that faults cannot exist on 
other planes.) This is unfortunate as far as the 
theoretical description of deformation mechanisms 
is concerned, for slip competes with twinning 
under some loadings. 

Twinning involving shear perpendicular to 
[001] makes an important contribution to the 
plasticity of polyethylene. The first systematic 
study of twinning as a contribution to deforma- 
tion was by Frank e t  al. [4], who concluded that 
twinning on {110} and {310} is most likely to 
occur in practice. The crystallographic elements 
of these twins are, in conventional notation [1 ], 

KI: ( l10) ;K2:(3 10);7/1:[110];,/2: [130]. 

(2) 

The magnitude of shear associated with these 
modes is 0.32, and plane-of-shear sketches for 
them are reproduced in Fig. la. Bevis and Crellin 
[6] analysed all the possible twin modes by 
treating every chain as a point in a two-dimensional 
lattice, and found that these modes have by far 
the lowest shear magnitude. Despite their recipro- 
cal relationship, however, only {110} twinning 
is usually observed in bulk oriented and single- 
crystal specimens [1-3]. {310} twinning has 
been reported, as reviewed by Preedy and Wheeler 
[7], but it is not clear to what extent its occurence 
is dictated by surface folds and modes of stress. 
In the light of this preference, information on the 
molecular structure and energy of the boundary 

(b) 

Figure 1 Plane-of-shear plots for (a)(3 10) 0 and (T10)0 
and (b ) ( lO0)m and (OlO)ra twinning. Molecules indi- 
cated as circles are sheared to positions shown by tri- 
angles. 

of these low-shear twins would be a useful aid to 
the understanding of the deformation process. 

Stacking faults and twins in the monoclinic 
phase of polyethylene have not been studied to 
any great extent, although Crellin [8] has con- 
sidered the possible twin modes using a two- 
dimensional, point-lattice analysis, and (010) 
twinning has been found in transformed regions 
of single crystals [1]. (For monoclinic indices, 
the convention employed here is that adopted in 
Part 1: namely, [001] is the diad axis and the 
"a-direction" of the unit cell (Fig. lc of [9]) is 
[100] .) There are several modes for twinning on 
(010), the shear magnitudes depending sensitively 
on cell angle/5 (Fig. lc of [9] ). For the theoretical 
value of ~ 77 ~ (see Table II of [9]), the lowest 
shear of (0.46) corresponds to the mode with 
elements 

Kx: (010);K2:(100);r/l :  [100];rt2: [010]. 
(3) 

Plane-of-shear sketches for (01 O) and (100) twin- 
ning by this mode are given in Fig. lb. (An equally 
low shear is associated with the mode (010) (4i-0) 
[TOO] [140], and the shear for this is lower still 
for the experimental 13 of 72.1 ~ An even lower 
shear of 0.11 accompanies (100) (120) [010] 
[210] twinning, but only half the chains are 
sheared to monoclinic sites.) As in the ortho- 
rhombic case, there is no obvious reason for the 
preference of twinning on one plane, i.e. (010), 
over its reciprocal, i.e. (100), and a study of 
twin-boundary properties is called for here also. 

Probably the only way at present of gaining 
detailed information about the molecular con- 
figuration and boundary energies of the stacking 
faults and twins referred to above is by computer 
simulation, provided the model crystals used offer 
reasonable approximations to polyethylene. The 
boundaries of coherent faults and twins are 
periodic in the interface plane and can, therefore, 
be modelled with a finite number of molecules. 
A general simulation suite ("DEVILS") has been 
described in Part 1 [9], and is used here to study 
these boundaries. As explained in [9], DEVILS 
describes a model of rigid, infinite chains, and so 
the characteristic features examined are those due 
to intermolecular forces well away from surfaces: 
the effects of surface folds are not explored. It 
would be necessary to incorporate these at a 
later date when intracrystalline behaviour is more 
fully understood. 
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The method used is described in Section 2. 
Results for stacking faults and twins in both phases 
of polyethylene are presented in Section 3 and 
discussed in Section 4. As was outlined above, 
dislocations provide important deformation mech- 
anisms in polyethylene, and in some cases are 
intimately related to stacking-fault stability. 
They have also been studied by computer simu- 
lation, and the results of this investigation form a 
separate paper (Part 3). 

2. Methods  
2.1. Stacking f a u l t s  
A translational stacking fault is created by the 
relative translation f of two parts of a crystal 
having the same orientation: the "fault vector", 
f, is usually taken to lie in the planar interface 
between the two parts, but displacement normal 
to the fault can occur. The energy of a crystal is 
raised by the presence of such a fault, and the 
only faults of real interest are those for which 
the crystat, is  in equilbrium without external 
constraint. Such "stable" faults are best revealed 
as minima on the three-dimensional surface 
obtained by plotting the stacking-fault energy per 
unit area, 3',,against f for a given fault plane [10]. 
If minima do not exist on such a 7-surface, except 
for the points when f is a lattice vector, stable 
faults are not possible for that plane. This is the 
principle employed by the routines of DEVILS 
in the present study. . 

The~ computations were carried out in two 
stages, In the first, a "/-surface was generated for 
a chosen plane by calculating 3' for a grid of f's 
without allowing any additional molecular relax- 
ations or rotations to occur: this "unrelaxed" 
7-surface was therefore produced relatively quickly. 
The fault plane (h k0)  was chosen as the x z -  

plane of the crystalline, and periodic boundary 
conditions were employed in the x direction to 
simulate an infinite fault. (Periodicity is ensured 
in the z direction [001 ] by the rigid-chain assump- 
tion of DEVILS [9] . )The  x dimension of the 
inner region was the lattice repeat distance in that 
direction and the y dil~ension was the shortest 
compatible with the inte!atomic potential range, 
thereby minimizing the computation time. The 
general fault vector is  

f = a[kfiO] +/3[0011, (4) 

and all possible 3' values are found with 0<~e, 
/3~< 1. In all cases examined, the unrelaxed 3'- 
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surface was similar in shape to that obtained when 
molecular relaxations were permitted, although 
of Course the value of 3' was higher. Also, no stable 
minima were found for values of/3 other than 0 or 
�89 as expected from symmetry. The second stage 
of the computation was concentrated, therefore; 
on likely stable-fault vectors (with /3 = 0 or �89 
identified in the first stage. 

DEVILS utilizes a Combination of steps for this 
relaxation alternately: they employ either ',local" 
molecular relaxation, in which chains are displaced 
and rotated to minimize energy according to  the 
conjugate-gradients method, or "rigid-body" relax: 
ation, in which the two halves of the crystal are 
rigidly displaced with respect to each other to 
minimize forces across the fault plane. The latter 
step modified f - usually by less than 1% of a - 
and can add to it a component perpendicular to 
(h k 0). The number of x z  planes (h k O) specified 
in the inner region for the relaxation stage 
depended on the fault-plane index, and was usually 
between six and ten for most of the relaxations. 
For all stable faults, however, this number was 
doubled, for a final relaxation; the resUlting change 
in 7 was found to be less than 0.5%~irLalt cases. 

The planes investigated were:, the 19N.-gadex 
ones considered good candidat.es for stable,~faulting, 
namely (100)0, (010)o, (310)o and (130)0 for 
the orthorhombic phase and (100)m, (010)m, 
(110)m and ( l l0 )m for the monoclinic. (The 
subscripts 0 and m are used here to denote the two 
structures.) All the simulations used the set I 
interatomic potentials described in Part 1 [9]. 

2.2. Twin boundaries 
In conventional theories of twinning [6], parent 
and twin parts of a deformation-twinned, crystal 
have the same crystal structure and are related by 
either simple reflection in a plane or rotation of 
7r about an axis. These operations refer in particular 
to reflection in K1, rotation of 7r about the normal 
to K1, reflection in the plane normal to rh and 
rotation of 7r about 7h. In these four relationships, 
the plane K2 containing r?2 remains undistorted 
but rotated by the simple shear in the direction rh 
parallel to the twin plane K 1 , which is undistorted 
and unrotated. (For the equally-feasible reciprocal 
mode, K1 and rh are interchanged with K2 and 
r/z .) The more-general definition of a twin [6] is a 
region that has undergone a homogeneous defor- 
mation such that the product is orientated 
differently from the parent but has an identical 



TWIN 

[110] : ql----~ 

PARENI 

Figure 2 Schematic representation of the conventional simple-reflection twin on (I TO) o. 

structure; the orientation relationship may be 
different from reflection or rotation. The twins 
to be dealt with here are conventional in their 
orientation but not necessarily in position. 

This is demonstrated in Fig. 2, which shows a 
(110)o twin produced in the orthorhombic 
structure by reflection in K1, as defined Relation 2: 
the molecules in the composition plane are shown 
as points since there are no crystallographic 
grounds for determining their setting angles. The 
twin produced by rotation of 7r about the normal 
to K 1 is the same as that shown in Fig. 2, whereas 
the other two conventional twin relationships have 
chains at the sites shown in Fig. 2 but with the 
arrows reversed, which is equivalent to the twin 
in the figure undergoing a rigid translation of 
�89 [001]. These four conventional twins are shown 
schematically in Fig. 3a and b. Two other twins 
can be produced from these simply by rigid-body 
translations of �89 [001] and/or �89 [110],  however, 
as shown in Fig. 3c and d, so that four distinguish- 
able interfaces exist. (There are, similarly, four 
variants for the (310)o, (100)m and (010)m 
twins also examined here.) In the general case, 
furthermore, the rigid translations which relate 
parent and twin need not be restricted to �89 [001] 
and �89 Indeed, from our earlier work on the 
(110)o twin in polyethylene [11] and similar 
theoretical and experimental work in metals [12, 
13], it is known that the low-energy, stable 
boundary is likely to be one corresponding to 
translation across the interface from the con- 
ventional position. 

The simulations of coherent twin boundaries, 
therefore, paralleled the stacking-fault investi- 
gation, in that the rigid-body, translations of the 

stable interfaces were sought (in addition to their 
energy and molecular structure). The {110}0, 
{310}o, (100)m and (010)m twins were chosen 
for study on the grounds of probable importance. 
The routines of DEVILS were first used to create 
a twinned crystalline with a simple reflection 
boundary on (hkO),  such as that for (1T0)o 
shown in Fig. 2. The unrelaxed twin-boundary 

Figure 3 The four conventional {110}o twin relationships. 
The unit cell is reflected in K1, but rigid translations in 
(b), (c) and (d) destroy the reflection symmetry of the 
molecular units in (a). 
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energy was computed for a grid of rigid-body 
translations with vectors of the form 

t = t~[kfiO] +/~[001] ,  (5) 

where 0 ~<a, ~ <  1. (As with stacking faults, 
stable interfaces with z translations other than 
/3 = 0 or �89 are not expected and were not found 
in any runs for which they were employed.) 
Energy minimization of the twinned crystallites 
was then undertaken allowing both local-molecular 
relaxations and rigid-body translations, particular 
attention being paid to regions on the unrelaxed- 
energy surface identified as possible minima. 
Economy of mill time was achieved by using 

small blocks with six (h k 0) planes in the inner 
region for most relaxations and only embedding 
into a block with twelve planes for a final mini- 
mization: this step was found to affect the relaxed 
twin-boundary energy by less than 0.5% in all 
cases. Again, all simulations employed the set I 
interatomic potentials [9]. 

3. Results 
3.1. Stacking faults 
Isometric 3,-surface plots of the unrelaxed stacking- 
fault energy 3'u for the (100)o,  (010)o and 
(110)o faults in the orthorhombic phase are 
shown in Fig. 4a to c. Each was generated from a 

"/u 
(J rff21 

'I I 

(G} (100) 0 [0011~.,,. 0 / t 0 1 0 l  

(J m-~ 
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Figure 4 Isometric surface plots of 
the unrelaxed stacking-fault energy, 
"Yu, for (a) the (100)o,  (b) the  
(010)  o and (c) the (110) o planes. 



0-2 

Yu 
(J m-2} 

0.1 

30 • 30 grid of  points given by varying o~ and/3 in 
Equation 4. For a given a shift, the variation of  
7u with [001] translation is approximately 
sinusoidal with period c, consistent with the inter- 
action between combinations of  periodic atomic 
rows and the crystal symmetry. Values of  ~ other 
than 0 or �89 can, therefore, be neglected. The 
stable minima at the corners of  the 3' surfaces, 
i.e. a and 13 = 0 or 1, correspond to perfect crystals, 
and clearly, therefore, stable stacking faults do not 
exist on (100)o and (010)o.  The topography of  
the surface for (1 10)o, however, reveals the 
possible existence of  one or more stable faults 
when a is approximately 0.5 and 0.8. This is seen 
more clearly in Fig. 5a, which shows the variation 
of  3'u with a for/3 = 0 or �89 for the (1 10)o plane. 
Four stable translations appear to be possible, 
corresponding to (a;/~) values of  (0.47;0), (0.52; 
0.5), (0.77; 0.5) and (0.97; 0.5). (Although the 
second and last of  these are unstable with respect 
to [0 0 1] shifts in the unrelaxed state, they may 
be stable after relaxation and camlot, therefore, 
be neglected.) Similar studies o f  the (3 1 0)o and 
(1 30)o planes indicate the probable presence 
of  faults on these also, as can be seen from the 
3'u plots of  Fig. 6a and b. The unrelaxed faults 
listed in Table I were, therefore, selected for 
simulations involving relaxations. 

Local molecular relaxations with the outer, 
fixed regions o f  the crystal held at a given f 
vector change the detailed shape of  the 3' surface 
but not,  in general, its form. The peaks on the 
surface are reduced typically by factors of  4 or 

Figure 4 Continued 

more and the troughs by factors of  about 2, and 
the a values of  the minima are close to those 
obtained from the 7u curves. This is demonstrated 
by the plots of  relaxed energy, 7R against a for 
(1 10)o faults in Fig. 5b, for which the forty data 
points were obtained for crystals containing six 
(1 10) planes in the inner region. The final energy 
minimization for faults identified from such 3'R 
curves were obtained using larger blocks with 
alternating molecular and rigid-body relaxations, 
as explained in Section 2, and the stable-fault 
vectors and energies are listed in Table II. The 
vectors are little changed from those in Table I, 
but in all cases the minimization o f  energy and 
interfacial forces required small translations o f  
the outer crystal regions perpendicular to the 

TAB LE I Unrelaxed stacking faults energies in ortho- 
rhombic and monoclinic polyethylene 

Fault Shift vector Unrelaxed boundary 
plane f energy, 3'u (mJ m -2) 

(110) 0 [0.47, -- 0.47, 0] 19.7 
(110) 0 [0.52, -- 0.52, 0.51 23.9 u* 
(110) 0 [0.77,--0.77,0.5] 34.1 
(110) o [-- 0.03, 0.03, 0.5 ] 27.8 u 
(310) 0 [0.49,--1.57,0] 17.6 
(130)0 [ 1.5, -- 0.5, 01 30.9 
(130) 0 [ 1.5, -- 0.5, 0.5] 31.6 u 

(100) m [0,--0.44,0.5] 20.1 
(100) m [0, 0.15, 0.5] 4.7 
(010)m [--0.41,0,01 11.4 u 
(010) m [--0.18,0,0] 6.6 

*u denotes unstable equilibrium. 
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Figure 5 Variation of (a) unrelaxed, 
3'u, and (b) partially-relaxed, ~/tt, 
stacking-fault energy with fault vec- 
tor c~[110] on the (110) o plane. 
The values r = 0 and 0.5 correspond 
to shifts of zero and c[2 in the 
[001] direction. 

fault plane. These volume expansions are included (see Fig. 7a) and (0 10)m, but not (110)m (Fig. 7b) 
in Table II. or (1]'0)m (Fig. 7c). The (010)m energy surface 

The simulations of  monoclinic crystals followed (Fig. 8a) shows a translation giving a 3"-value of  
a similar pattern, with the 7u curves indicating zero: this is because the vectors �89 [101 ] and 
the possible existence of  stable faults on (100)m �89 [10]-] are lattice vectors of  the structure. The 
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faults produced by the translations given in 
Table I were relaxed partially (see Fig. 8b, for 
example) and then fully, and the faults listed 
in Table II were found to be stable. The volume 
expansion for the (100)m faults was negligible. 

3.2. Twin boundaries 
The unrelaxed energy, 7T, of  the coherent 
boundary for the (110)o twin as a function of  
rigid-body translation away from the conventional 
reflection position is shown by the energy surface 
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T A B L E I I Possible stacking faults in orthorhombic and monoclinic polyethylene with fully-relaxed fault energies 

Fault Shift vector Expansion Relaxed boundary 
plane (after rdaxation) normal to energy 

f plane fault (mJ m -2) 

(110) o [0.466, -- 0.466, O] 1.4% 12.5 
(11 O) o [0.516, -- 0.516, 0.5 ] 0.3% 10.2 
(11 O) o [ 0.743, -- 0.743, 0.5 ] 3.7% 17.7 
(310) o [0.497, -- 1.491, O] 0.1% 10.2 
(13 O) o [ 1.5, -- 0.5, O] 5% 17.4 
(130) 0 [1.5,-- 0.5, 0.5] 2.8% 9.7 

(100) m [0, -- 0.45, 0.5] - 10.4 
(100) m [0, 0.15, 0.5] - 3.4 
(010)m [--0.415, O, O] 1% 9.5 

[0.085, o, 0.5] 
(010) m [-- 0.226, O, O] 1.3% 3.6 

[0. 274, O, 0.5] 

of  Fig. 9a. This immediately suggests that  none of  
the conventional parent-twin interfaces (Fig. 3) 
are stable with respect to  translation. The same is 

true for the (310)o ,  (100)m and (010)m twins, 
as indicated by the unrelaxed-energy curves of  
Figs. 10a to c, respectively, although some minima 
are close to a = 0. All the (possibly-stable) minima 
identified from the unrelaxed-energy calculations 
are listed in Table III. The ((310)m curves reveal 
the invariance with respect to the �89 [101 ] lattice 
translation vector referred to" in Section 3.1. 

On subsequent partial relaxation with local 
molecular displacements and rotations allowed, 
the energies decreased, as shown by the example 
for the variation of  TR with a for the (110)o twin 
reproduced in Fig. 9b. The energies, translation 
vectors and volumes for the fully-relaxed ortho- 
rhombic and partially-relaxed monoclinic stable 
boundaries are given in Table IV. (The time- 
consuming, full relaxations were omit ted  in the 
latter cases, but  the energies should be within 
5% tO 10% of  the true values.) The (310)0 twins 
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Figure 7 Variation of unrelaxed 
stacking-fault energy "/u, with a for 
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have much higher boundary energy than the 
(1 1 0)o twins, and their associated volume expan- 

sions are correspondingly greater. Similarly, the 
(0 1 0)m twins have lower energy than the (100)m 
twin interfaces. 

4 .  D i s c u s s i o n  

4.1. Boundary stability 
The stability of all the boundary configurations 
reported in the preceding section has been checked 
by imposing rigid shifts of 0.1 [001] on the 
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Figure 8 (a) Isometric surface plot 
of the unrelaxed stacking-fault 
energy, 3'u, on the (0i O)m plane. 
(b) Variation of partially-relaxed 
fault energy, 3"R, with fault vector 
a[lO0] on the (010) m plane for 
shifts of zero and c/2 in the [001] 
direction. 
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translations listed, and then allowing further 
relaxations: the original structure was always 
recovered. It should be emphasized that the 
stacking-fault and coherent-twin energies quoted 
refer to crystals in equilibrium under the  set I 
non-bonded interatomic potentials descrilSed in 
Part I [ 9 ] .  Such energies can be rather sensitive 
to the shape and range of  interatomic potential, 
and Should be considered as data for a model 

crystal rather than physical parameters for poly- 
ethylene. In order to examine this point further, 
unrelaxed 7-surfaces for stacking faults were 
generated for (100)o,  (010)o and (110)o using 
the set VII and set VIII (Truncated) potentials 
[9]. The latter set is markedly different from set 
I in that the ranges are small. The overall form 
of the 3'-surface was found to be very similar to 
that for set I in each case. The vectors of the 
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Figure 9 (a) Isometric surface plot 
of the unrelaxed boundary energy, 
~'T, for the (110)o twin. (b) 
Variation of the partially-relaxed 
boundary energy with translation 
c~[11-0] for the (110) 0 twin: t3= 
0.5 refers to an additional trans- 
lation of ~-[001 ]. 
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.0 

stable (1 10)o faults were in close agreement, the 
(o~; 13) values for the minima with respec t to the 
[1 TO], [001 ] translations being (0.47; 0),  (0.53; 
0.5) and (0.81; 0.5) for bOt h~set VII and set VII 
(Truncated); the correspond~g ~'u energies are 
25.9, 33.6 and 45.9 mJ m= ~', ~espectively, for set 
VII, and 22.0, 24.4 and 38.5 ~ m -2 , respectively, 
for set VII (Truncated). Comparison with Table I 

shows that the fault vectors are little changed; 
and, in fact, all the translations found 'here are 
believed to be realistic, for, as discussed below, 
they can be demonstrated to have features that 
are not potential-dependent. The dependence of 
1' on potential range is small and probably reflects 
the fact that the faults involve nearest-neighbour 
changes. The energies obtained suggest that the 
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relative energy values given in Section 3 have 
significance and they should provide at least a 
good guide to the energies one may expect for 
polyethylene. 

The presence of stable faults for shift para- 
meter ~ 0 . 5  on {110}o and {130}o of the 
orthorhombic phase suggests that low-energy 
faults may also exist on {15 (3}0, {17(3}o, etc., 
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Figure 10 Variation of  unrelaxed 
twin-boundary energy, 3"I? with c~ 
for translations of  (a) ~[130]  on 
(310)o, (b) c~[010] on (100)rn, 
and (c) a[1001 on (010) m. The 
curves /3--0.5 are for additional 
translation of  ~-[001 ] .  
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for similar values of a. The 7u form of the (510)0 
plane was therefore investigated and a stable 
fault of 7u = 14.8 mJ m -2 at a = 0.5 revealed. 
Whilst this energy is even lower than that on 
(1 10)o, the �89 vector required to create it 
is too large for any conceivable dislocation mech- 
anism, and the energy barrier to be overcome in 
achieving such faults increases rapidly with increas- 
ing index. They have not, therefore, been con- 
sidered further. It is possible that stable faults 
exist on other planes, and, indeed, faults are seen 
on the 7u curves for (120)o and (210)0. Their 
energies are several orders of magnitude higher 
( ~ 5 J m  -2) than the {110} faults, however, and 
were not examined in detail. The faults listed in 
Table II are considered to be the only ones of 
significance.* 

The molecular structures of the (110)o stack- 
ing fault with f =  [0.52, --0.52,  0.5] and the 
three (110)o twins with t = [0.04, --0.04,  0],  
[0 .32 , - -0 .32 ,  0] and [ 0 . 8 3 , - 0 . 8 3 ,  0.5] are 
shown in Fig. 11. (The twin structure in Fig. 11 d 
and the 3' against a curves of  Figs. 6 and 8, are 
very close to the results of our previous simulation 
of {1 10}o twins [12]: the minimum 7R is higher, 
however, owing to an error in a numerical para- 
meter employed earlier.) The stability of these 

(0 1 O) m 

x 

0.8 1.0 

Figure 10 Continued 

and the other structures, and also the general 
form of the 3' surfaces and curves presented in 
Section 3, can be understood by consideration 
of the interaction of the molecules that are nearest 
neighbours across the interface plane. As the f 
and t translations are undertaken from the perfect- 
crystal and conventional-reflection-twin states, 
respectively, peaks on the energy surface arise 
when the molecules are at positions of closest 
approach. The peaks are higher for high-index 
planes and are particularly large when the setting 
angles are such that the hydrogen-hydrogen 
separation is small. The energy minima, on the 
other hand, always correspond to situations 
where adjacent pairs of nearest-neighbour chains 
form interfacial polygons which approximate 
to parallelograms with acute angles between 
70 ~ and 80 ~ . These shapes are denoted by dashed 
lines in Fig. 11, the angles being 79 ~ for (a) and 
73 ~ for (b), (c) and (d), and are characteristic 
features of all the stacking-fault and twin 
boundaries found in both crystal structures. As 
examples, those which form the boundary repeat 
units for the lowest-energy stacking faults on 
(310)o, (13 0)o, (100)m, (010)m and twins on 
(3 10)o, (100)m, (010)m are shown schematically 
in Fig. 12a to g, respectively. 

*The (100)0 fault considered by Wunderlich [14] is not a true, translational fault, for it requires the insertion of a 
complete (100) plane of molecules, and might occur, for example, in growth. 
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Figure 11 (a) The boundary structure of the 
stable (1 !0)0 stacking fault with vector 
f =  [0.516, --0.516, 0.5] and energy 
10 .2mJm -2. Structures  for the stable 
(110)o twin boundaries with t =  [0.041, 
--0.041, 0], [ 0 . 3 1 6 , - - 0 . 3 1 6 ,  0] and 
[0.826, --0.826, 0.5] are given in (b), 
(c) and (d) respectively. Circles represent 
chain sites in the parent crystal and triangles 
those in the product: the filled triangles 
were originally at filled circle sites in (a) 
and were at the reflection sites of filled 
circles before translation in (b), (c) and 
(d). For clarity, the chain orientation 
vectors are shown only for chains near the 
interface; numbers next to chains are the 
setting angles (in degrees) measured from 
[110]. 

\ '~l, 73~'\ 

(b) 
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Figure 11 Continued. 
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T A B L E  I I I  Local minima in the unrelaxed twin 
boundary energy for various rigid shifts, t, in ortho- 
rhombic and monoclinic polyethylene 

Twin Shift Unrelaxed boundary 
plane, vector, t energy, ?T (mJ m -2) 
Kt 

(110) 0 [0.04, -- 0.04, 0[ 27.8 
(110) 0 [0.31,-- 0.31, 0] 27.8 
(110) 0 [0.5,-- 0.5, 0.5] 23.1 
(110) 0 [0.85, -- 0.85, 0.5] 23.1 
(3 10) o [-- 0.03, 0.09, 0] 162.5 
(310) 0 [0 .49 , -  1.47, 0] 162.5 
(3 10) 0 [-- 0.02, 0.06, 0.5] 58.5 
(3 10) 0 [0.48, -- 1.44, 0.5] 58.5 

(100)m [0,--  0.01, O[ 12.7 
(100) m [0, -- 0.6, 0] 12.7 
(100)m [0,- 0.21, 0.51 5.3 
(100) m [0,--0.39,0.51 5.3 
(010)m [0.49, 0, 0] 3.6 
(010) m [0.75, 0, 0] 3.6 
(010) m [0.25, 0, 0.51 3.6 
(010) m [-- 0.01, 0, 0.5] 3.6 

These structures can be explained by the fact 
that  stability occurs when the neighbour-to- 

boundary structures, and the geometries found, 
therefore, are of  general validity. From the mole- 
cular geometry of  the boundaries in Fig. 1 lb  and 

c, it  is easy to see why their energies are the same: 
the other twin energies are paired for the same 
reason. 

4.2. Stackin9 faults and slid 
The shape of  the 7 surface for a particular plane 
is related to the core structure and ease of  move- 
ment  of  dislocations on that plane [10], for it 
is determined by the geometry and form of  the 

intermolecular forces spanning the plane. In 
particular, the total  restoring force F ( =  --  grad 7) 
divided by  the shear modulus appropriate to the 
direction of  translation determines the "width"  
of  the core of  dislocations with Burgers vectors 
in that  direction. A maximum in F corresponds 
to a narrow width and a minimum to a wider 
region of  core for a given vector. Furthermore,  
a fault displacement f defining a stable minimum 
in 7 corresponds to the Burgers vector b of  a 
partial dislocation bounding a stable fault.  The 
computer  models for or thorhombic crystals have 

neighbour lines across the interface complete shown that faults do not  exist on (100)0 and 
coordinations that  approximate to  the perfect 
crystal. The latter are shown in Fig.13 (with 
dimensions for the set I potentials),  from which 
it can be seen that  the interracial polygons com- 
bine small distortions of  these units with chain 
rotations through approximately 90 ~ or 180 ~ . 
It is probable that  any potentials that  describe 
perfect crystals in equilibrium will produce similar 

(1310)0, but  point to complex possibilities on 
(1 10)0. The (1 10)o fault vectors of Table II 
are shown schematically in Fig. 14a as AL, AM 
and AN and imply the existence of  partial  Burgers 
vectors of  the form + AL, AM, AN, LB, LC, LD, 
LM, LN, MD, MN, ND, together with any of  these 
added to -+ [001 ], etc. 

As far as orthorhombic,  chain-axis slip with 

T A B L E I V Stable relaxed twin boundaries in orthorhombic and monoclinic polyethylene 

Twin plane, K 1 Shift vector, t Expansion normal to K I Relaxed boundary energy (mJ rn -2) 

(1 10)o [0.041, -- 0.041, O] 3% 13.7 
(110)o [0.316, -0.316, O] 1.6% 13.8 
(1 1 O) o [0.503, -- 0.503, 0.5] 2% 12.0 
(1 10) o [0.826, --0.826, 0.5] 1.3% 11.5 
(3 10) 0 [--0.027, 0.081, O] 15.2% 50.6 
(310) 0 [0.487, -- 1.461, O] 13.7% 51.9 
(31 O) o [-- 0.020, 0.060, 0.5 ] 8% 32.4 
(3 10) o [0.480, -- 1.440, 0.5] 5.3% 33.4 

(100)  m [0, -- 0.01, 0] * 5.9 
(100) m [0,-- 0.6, 0] * 6.0 
(100) m [0, --0.21, 0.51 * 4.6 
(100) m [ 0 , -  0.39, 0.5] * 4.6 
(010)m [0.49, O, Ol * 2.2 
(010)m [0.75, 0, 0] * 2.3 
(010)m [0.25, 0, 0.5] * 2.3 
(010)rn [-- 0.01, 0, 0.5] * 2.2 

*Not calculated. 
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(31O)o ~ 2,, ;'I" (1oo) (olo)m,--~ -- ,  (~OO)m_= _ 

" - . /  (0.5;0) (085;0'5) ~--J (-0-23;0) (02;0"5) 

(a) (c) (d) (f) 

," ,31o ?, <.v, 
/ .,J': ; 

[0-5;05/ ~ [1301 (0.5;0) [100~ 
[b) (0;0.5) 

(g) (e) 

Figure 12 Schematic representation of boundary structures of (a) (310)0, (b) (130)0, (c) (100) m and (d) (010) m 
stacking faults, and (e) (310)o, (f) (100) m and (g) (010)m twins. The translation parameters are denoted thus (a;/3), 
and the unit cell orientations are shown by faint lines. 

b = [001] is concerned, therefore, dissociation 
should not occur: even in the least unfavourable 
case of D C - + D M + M C  on (110)o, Frank's 
rule shows that dissociation is not possible. From 
this conclusion and the observation that 7 varies 
approximately sinusoidally when f lies along 
[001], it can be surmised that chain-axis slip is 
most favoured on the plane of the [001] zone 
with smallest quotient of maximum F (i.e. smallest 
maximum 7) divided by the appropriate shear 
modulus. Of the planes considered here, (100)0, 
(010)0 and (110)o have the lowest maximum 7 
(at f = �89 [001]),  in the ratio 1:1.6:1.3, and from 
[9] their [ I00]  shear moduli are in the ratio 
1:1.8:1.6. There is, therefore, no firm indication 
that the core width will be greater (and the Peierls 
stress lower) on one plane rather than the others: 
a full molecular simulation of the dislocation core 
is required to shed light on that point. The situation 
for transverse slip with b perpendicular to [001] 
is somewhat different. Dislocations on the low- 
index systems (100)o [010] and (010)0 [100] 
are not expected to dissociate. Comparison of the 
3' surfaces in Fig. 4a and b suggests ttiat the former 
system should have the lower Peierls stress, but 
even that should be much higher than that for 
[001] slip on the same plane. DislOcations on 
(110)0 can dissociate, however, the reactions 
most favoured by Frank's rule being (see Fig. 
14a) 

[1 1-01 -+ [0.47,--0.47,  0] + [0 .53 , - -0 .53 ,0] ,  

(6) 

followed by 

[1 i-01 + [0.52, -- 0.52, 0.51 

+ [0.48, -- 0.48,--0.5] 

(7) 
Even though the former involves a fault of higher 
energy than the latter (see Table II), the reduction 
in dislocation energy probably more than offsets 
it. (A full anisotropic-elastic calculation similar 
to those of Shadrake and Guiu [15] would be 
required to confirm this.) Both partial vectors 
bounding the fault in Reaction 6 are shorter in 
magnitude than [100] and [010],  and the 
maximum value of F on the 7 surface along 
[1i-01 on (1 10)o is small in comparison with the 
values for the (010)o [100] and (100)o [010] 
systems. These factors point strongly to transverse 
slip being dominated by dislocation glide on 
{110}o. The faults reported in Section 3.2. for 
other planes of the [001] zone are unlikely to 

I ~ O,432nrn ,~ !. 0.401 nm ~1 

/0.432 nm [010It /0.445 nrn 
/ , / t 7"2•'.L.. 

--}[1T01 '--}[100]--; 
(a) (b) 

Figure 13 The basic stable units of four molecules for (a) 
orthorhombie and (b) monoclinic crystals. (The dimen- 
sions and angles are for the set I potentials.) 
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(Q) (110) 0 

B C 

of M 1 
[0.ZT,-0'Z.7,0] L [1T0] 

(b) (100) m 

B C 

j 
A~... ,v. ~D 

[0101 

B C 

(c) (010) m ~176 ~ r , . ~  's\ /V 

[o.s&o,o I #~o, ol { ~D  

Figu#e14 The stable-fault vectors for stacking faults 
on (a) the (110)o, (b) the (100)ra and (C) the (010) m 
planes. The lengths are approximately to scale. 

contribute to slip in view of the long Burgers 
vectors and narrow cores (produced by high F 
values)the partials can be expected to have. 

The stable-fault translations found for the 
monoclinic case are shown schematically for 
(100)m and (010)m in Fig. 14b and c, respec- 
tively. As on (110)0, a large number of partial 
Burgers vectors are possible, although it should 
be noted that on (010)ra the translations of the 
form A N  generate a perfect crystal, so that Q and 
P are equivalent to L and M, respectively. The 
faults at M on (100)m and M and P on (010)m 
have much lower energy than the others (see 
Table II). The absence of stable faults on (110)m 
and ( l ] '0)m suggests that chain-axis [001] slip 
in the monoclinic phase will occur on (100)m 
and (010)m, for dissociations of the form AB-+ 
AM - MB on (100)m and A B - + A Q + Q B  on 
(010)m are possible with an attendant reduction 
in dislocation energy of about one third, as calcu= 
lated from the change in [b 12 . Of these two, slip 
on (lO0)m is favoured, for the fault energy is 
much lower and the width of the partial cores 
(as measuredby F = grad 3,)is greater.Transverse 
slip may also be expected to take place most 
readily on the two planes that can be faulted. Of 
the possibilities on the (100)m [010] system, 
the dissociation of AD into A M + M L  + L D  

involves the largest reduction in dislocation 
energy, estimated to be approximately 45% from 
the change in  [b 12 , followed by AL + LD with a 
reduction of about 30% and A M + M D  with a 
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decrease of 10%. The last of these solely involves 
the low-energy fault, however, and it is not possible 
to predict which of these dissociations should be 
dominant with the simple criteria used here. Of 
the possibilities on (010)m, on the other hand, 
-~ [ 101 ] slip should dominate, for not only is this 
lattice-translation vector much shorter than 
[100], but it can dissociate to the low-energy 
fault by the reaction AN ~ AP + PN, with a 
reduction of 44% in [b[ 2. From the shape of the 
3' surface (Fig. 8a), the two partial cores for this 
reaction should be relatively wide, and even when 
the applied stress acts exactly along [100], 
(010)m [100] slip can occur by reactions of this 
type. One would expect, therefore, that (010)m 
would be the preferred plane for transverse slip in 
monoclinic polyethylene. 

4 .3 .  Genera l  d iscuss ion  
The geometries of the stable, coherent, twin inter- 
faces are more complicated than previously sus- 
pected. The four (110)0 boundaries, in particular, 
have very similar energies, and a preference for any 
one over the others cannot be made on the basis 
of computer models. On energy grounds, the 
(110)o twins are favoured over the (310)0, 
despite their reciprocal relationship, and similarly 
(010)m twin boundaries are preferred to (100)m : 
these conclusions are consistent with the experi- 
mental observations discussed in Section 1. They 
only provide a partial explanation, however, for 
twinning is a shear mechanism involving the 
motion of twinning partial dislocations along the 
interface, and a full study of their structure and 
properties is required for a complete picture to 
emerge. This is particularly true in the ortho- 
rhombic cases, for the simple shears of low magni- 
tude 'do not, on their own, restore chains in the 
twin with the correct setting angles from one 
plane to the next. It would be possible to incor- 
porate twinning dislocation into the computer 
models of boundaries studied here, and it is 
planned that this will be accomplished in the 
future. For the moment, it is clear from the 
high restoring forces on the energy surface of the 
(310)o twin interface that the twinning dislo- 
cations for this mode will have narrow cores and 
may be relatively difficult to move. Furthermore, 
the variety of stable structures for all the inter- 
faces suggests that the incoherent boundary 
associated wi th  twinning dislocations may be 
complicated by dissociation, as found, for example, 



in b c c  metals by Bristowe and Crocker [16]. 

Finally, it should be remarked that the method of 

computer simulation could be used to investigate 4. 

the or thorhombic-monocimic  transformation, for 5. 
both structures are stable with the potentials 6. 

employed. This stress4nduced, martensitic trans- 

formation is an important deformation mechanism 7. 
of polyethylene, and, like twinning, can occur due 
to a variety of shear modes [1 ]. (For this reason, 8. 
the transformation path considered by Yemni and 9. 

McCullough [17] is not appropriate to this 
problem.) We hope to report on the nature of the 10. 
interface and the molecular structure of the trans- 11. 

formation dislocations at a later date. 12. 
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